A New Maximum Searching Method for Unknown One-Dimensional Multimodal Functions

نویسنده

  • Kenji KUBOTA
چکیده

In this paper a global maximum searching method is developed for one-dimensional multimodal unknown functions. Justifiable properties of one-dimensional functions are analyzed, and they are used in the method of making approximate functions and global maximum searching. In maximum searching the domain is divided into a set of subdomains, and within the set, the sub-domain whose estimated maximum is the largest is chosen. At a properly selected point within the subdomain an evaluation of the function is made, and the sub-domain is dividbd into two smaller ones for more accurate estimation. This process is continued until the estimated maximum become equal to the evaluated maximum. For estimation of the maximum of a sub-domain a parameter of uncertainty is introduced. The larger the uncertainty is, the larger the estimated maximum is made. A large estimated maximum means either that the true local maximum is large or that a closer search of the subdomain is required to reduce the uncertainty. This uncertainty also plays a role of changing searching modes from global to concentrated local search and to checking if the maximum obtained is the true maximum. Performance of the method is evaluated for six test functions ranging from a unimodal up to a 13-modal one. The results show that the maximum points are obtained with high efficiency and with high reliability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions

This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

The solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space

In this paper, to solve a linear one-dimensional Volterra  integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of  integral equation in terms of the basis functions. The examples presented in this ...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009